Behavioral Estrus and Ovarian Activity in Goats (Capra hircus)

J. Eiamvitayakorn¹ E.M. Rigor²

Behavioral estrus and ovarian activity were studied. Two vasectomized bucks were used in heat detection. Laparotomies were performed approximately 60 hours after the onset of estrus to determine the ovarian activity. The common signs of estrus were observed with the duration of 0.5 - 3 days. The right ovary appeared to be more active than the left (52.9% VS. 47.1%). Single ovulation occurred 55.1%, twin 40.9%, and triplets 2% in each estrous cycle. The mean number of ovulation per doe was 1.4 ± 0.1. All ovulation occurred within 60 hours after onset of estrus.

¹ Veterinary Service Division, Dept of Livestock Development, Bangkok 10400.
² Institute of Animal Science, UPLB, Philippines.
Introduction

Goats (Capra hircus) are among the most important domestic farm animals in the world as a source of meat, milk, hide and wool and in recent years a marked increase in the number of goats has been associated with an interest in goat research. In comparison with other production ruminants, however, there is a shortage of information available on reproductive characteristics of the goats (Moore, 1984). Estrus or heat is defined as a period of proper psychological and physiological state during which copulation is permitted (Nalbandov, 1976) or a period when a doe shows sexual interest and allows the buck to serve her (Anon, 1985). Little data on ovulation rate has been reported (Shelton, 1978). Data relating to kidding rate was summarized by Devendra and Burns (1970).

With a view to provide a sound basic data for successful application of artificial means in manipulating the reproductive performance, the present study aimed to obtain more decisive evidence of the functional activity of the ovaries and related reproductive phenomena in goats.

Materials and Methods

Behavioral estrus and ovarian activity were studied in a group of 26 cyclic native does, age 3-5 years. Two aggressive vasectomized bucks were used to aid in heat detection. The signs of estrus were closely observed twice daily for 6 months.

Laparotomy was performed approximately 60 hours after the onset of estrus. To determine whether estrus was accompanied by ovulation and to observe other ovarian activities, the following criteria were used (Hafez, 1980; Camp et al., 1983):

1. Ovulation point - a newly erupted follicle with oozing blood-tinged intrafollicular fluid at the point of rupture.
2. Corpus haemorrhagicum - an opaque, reddish colored structure with extravasated blood.
3. Corpus luteum - a solid, highly vascularized structure 8 to 13 mm in diameter and pinkish in color, reaching mature stage at about 5 days after onset of estrus.
4. Preovulatory follicle - a blister-like structure protruding from the ovarian surface with a diameter of greater than 5 mm.
5. Tertiary follicle - a visible follicle measuring lesser than 5 mm in diameter.
6. Corpus albican - a white fibrous mass about 2.5 mm in diameter or less.

The doe that did not come into heat within 30 days after the last heat was also subjected to laparotomy to see if there was silent ovulation.

Results

Estrus Cycle

Of 26 does that were cycling, 5 (19.2%) had a normal pattern of estrous cycle throughout the experiment, ranged from 19-23 days. The rest (21 does) exhibited a combination of short, normal and/or long cycles. The occurrence of short or long estrous cycles was not specific to anyone goat in the experiment. The length of estrous cycles had a mean of (mean ± SEM) 21.1 ± 1.3 days with a range of 4-79 days and a mode of 20 days (23.3%). Some of these results have been published in a preliminary report (Eiamvitayakorn et al., 1988).

Signs of Estrus and Estrous Duration

The signs of estrus commonly found were: -

1. Mounting other does.
2. Shaking of tail from side to side especially when the buck was around.
4. Swelling and redness of the vulva.
5. Mucous discharge from the vulva.
6. Frequent urination.
7. Showing great interest and trying to come near the buck.
8. Standing still when the buck mounted.

The signs of estrus might be observe at any time of the day but the degree of behavioral estrus could be seen obviously during the presence of the buck. The does showed signs of estrus ranged from 0.5 to 3 days with a mean of 1.6 ± 0.1 days. Silent estrus or quiet ovulation contributed to 50% of abnormal long cycles.

Ovarian Activity

Laparotomy at 60 hours after estrus found that all but one had ovulation (98%). Single ovulation occurred 55.1%, twin 40.9% and triplets 2% of the time (Table 1). No ovulation was found at second estrus of one long cycle in one doe but 2 big graffian follicles (ϕ > 1 cm) were found in the left ovary.

From 9 (42.8%) out of 21 multiple ovulations, corpus luteum were found on the same ovary. The right ovary appeared to be more active than the left (52.9% VS. 47.1%). The mean number of ovulations per doe was 1.4 ± 0.1 with the range of 0-3 ovulations (Table 2). The difference was not significant. Mean number of follicles was 6.6 ± 0.6 on the right ovary and 5.7 ± 0.5 on the left ovary with the total mean of 12.2 ± 0.9 follicles per doe.

Table 1. Ovulation rate in does

<table>
<thead>
<tr>
<th>Ovulation per doe</th>
<th>No. of laparotomies</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>27</td>
<td>55.1</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>40.9</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>49</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Table 2. Ovarian activity of the right and the left ovaries

<table>
<thead>
<tr>
<th></th>
<th>Right</th>
<th>Left</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of ovulations</td>
<td>37</td>
<td>33</td>
<td>70</td>
</tr>
<tr>
<td>Mean ± SEM</td>
<td>0.8 ± 0.1</td>
<td>0.7 ± 0.1</td>
<td>1.4 ± 0.1</td>
</tr>
<tr>
<td>No. of follicles</td>
<td>324</td>
<td>277</td>
<td>601</td>
</tr>
<tr>
<td>Mean ± SEM</td>
<td>6.6 ± 0.6</td>
<td>5.7 ± 0.5</td>
<td>12.2 ± 0.9</td>
</tr>
</tbody>
</table>

Discussion

Report on length of estrous cycles in goat showed a very wide range of variation. There were some percentage of both short and long estrous cycles which when included made a mean length of cycles seem
to be normal. Several workers believe that the occurrence of short and long estrous cycles in goats is a normal physiological phenomenon though the reasons are obscure (Warbritton, 1934; Sahni and Roy, 1967; Corteel, 1975; Prasad, 1979; Armstrong et al., 1983). The occurrence of abnormal estrous cycles found in this experiment were not entirely confined to any specific time throughout the observation. Corteel et al. (1982), Gonzales and Bury (1982) and Camp et al. (1983) noted that abnormally short estrous cycles have been observed at the initiation of the breeding season, but the causes are poorly understood. Shelton (1978) who studied in Angora goat suggested that the reason for abnormal cycles could be explained on some basis other than genetic variance in cycle length.

Estrus duration was not differ from other reports in the Philippines (Villegas, 1959; Mangalindan, 1984; Abilay, 1984; Sah and Rigor, 1985; Anon, 1985). Strong heats under the best environment, social and nutritional conditions may last 2-3 days and weak or nearly silent heats may last for only a few hours as suggested by Guss (1977). The long cycles probably were the result of unobserved heats due to a silent ovulation or less frequent observations for heat (Sahni and Roy, 1967). However, in this study only 50% of long cycles had quiet ovulation in between.

All does that showed estrus had common signs with some degree of variations but the most reliable sign of estrus was the doe being receptive to mounting.

The functional activity of the ovaries implies the frequency of the ovulation in the two ovaries (Lyngset, 1968). In several species, one ovary has been found to be more active than the other. Many publications indicate greater activity in the right ovary than the left in goats (Lyngset, 1968; Wani, 1982; Camp et al., 1983; Sah and Rigor, 1985). Rowlands and Barbara (1984) and Rao and Bhattacharyya (1980) found that ovulation was distributed equally between the two ovaries. In our finding, the right ovary appears to be more active than the left, however, the difference is not significant. Multiple ovulations found on the same ovary was 42.8% of observations. This is differ from the earlier mention by Hulet and Shelton (1980) who found a marked tendency to develop 2 mature follicles in the same ovary in the same follicular phase. Almost 100% of does, ovulations took place within 60 hours. This supports the finding of Sah and Rigor (1985) who found ovulation took place not later than 54.4 hours after onset of estrus. Only one doe had no ovulation but 2 cystic follicles at the time laparotomy was performed.

Goats is considered to have high heritability for multiple births (Rao and Bhattacharyya, 1980), however, this high fertility rate was often potential rather than actual (Anon, 1984). There is a definite tendency to lose one egg when two were shed from the same ovary (Lyngset, 1968). This may be due to the time elapses between the first and second ovulation and the timing of ovulation in relation to mating. This study could lead us to a better understanding of reproductive characteristics of goats and a greater awareness in heat checking, timing for AI or other means in attempts to increase productivity of goats.
REFERENCES

